Discrete transformation hypergroups and transformation hypergroups with phase tolerance space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete commutative hypergroups

The concept of a locally compact hypergroup was introduced by Dunkl [6], Jewett [14] and Spector [26]. Hypergroups generalize convolution algebras of measures associated to groups as well as linearization formulae of classical families of special functions, e.g. orthogonal polynomials. Many results of harmonic analysis on locally compact abelian groups can be carried over to the case of commuta...

متن کامل

Construction of Discrete, Non-unimodular Hypergroups

We explain how one can construct a class of discrete hypergroups which are non-unimodular. They arise as double coset hypergroups induced by the transitive action of a non-unimodular group of permutations on an innnite set. A concrete example is given in terms of the aane group of a homogeneous tree.

متن کامل

Discrete Hypergroups Associated with Compact Quantum Gelfand Pairs

A discrete DJS-hypergroup is constructed in connection with the linearization formula for the product of two spherical elements for a quantum Gelfand pair of two compact quantum groups. A similar construction is discussed for the case of a generalized quantum Gelfand pair, where the role of the quantum subgroup is taken over by a two-sided coideal in the dual Hopf algebra. The paper starts with...

متن کامل

on semihypergroups and hypergroups

in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...

15 صفحه اول

Algebraic Quantum Hypergroups

An algebraic quantum group is a regular multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.08.005